Protective Effects of Clenbuterol against Dexamethasone-Induced Masseter Muscle Atrophy and Myosin Heavy Chain Transition
نویسندگان
چکیده
BACKGROUND Glucocorticoid has a direct catabolic effect on skeletal muscle, leading to muscle atrophy, but no effective pharmacotherapy is available. We reported that clenbuterol (CB) induced masseter muscle hypertrophy and slow-to-fast myosin heavy chain (MHC) isoform transition through direct muscle β2-adrenergic receptor stimulation. Thus, we hypothesized that CB would antagonize glucocorticoid (dexamethasone; DEX)-induced muscle atrophy and fast-to-slow MHC isoform transition. METHODOLOGY We examined the effect of CB on DEX-induced masseter muscle atrophy by measuring masseter muscle weight, fiber diameter, cross-sectional area, and myosin heavy chain (MHC) composition. To elucidate the mechanisms involved, we used immunoblotting to study the effects of CB on muscle hypertrophic signaling (insulin growth factor 1 (IGF1) expression, Akt/mammalian target of rapamycin (mTOR) pathway, and calcineurin pathway) and atrophic signaling (Akt/Forkhead box-O (FOXO) pathway and myostatin expression) in masseter muscle of rats treated with DEX and/or CB. RESULTS AND CONCLUSION Masseter muscle weight in the DEX-treated group was significantly lower than that in the Control group, as expected, but co-treatment with CB suppressed the DEX-induced masseter muscle atrophy, concomitantly with inhibition of fast-to-slow MHC isoforms transition. Activation of the Akt/mTOR pathway in masseter muscle of the DEX-treated group was significantly inhibited compared to that of the Control group, and CB suppressed this inhibition. DEX also suppressed expression of IGF1 (positive regulator of muscle growth), and CB attenuated this inhibition. Myostatin protein expression was unchanged. CB had no effect on activation of the Akt/FOXO pathway. These results indicate that CB antagonizes DEX-induced muscle atrophy and fast-to-slow MHC isoform transition via modulation of Akt/mTOR activity and IGF1 expression. CB might be a useful pharmacological agent for treatment of glucocorticoid-induced muscle atrophy.
منابع مشابه
Effects of beta(2)-agonist clenbuterol on biochemical and contractile properties of unloaded soleus fibers of rat.
The effects of clenbuterol beta(2)-agonist administration were investigated in normal and atrophied [15-day hindlimb-unloaded (HU)] rat soleus muscles. We showed that clenbuterol had a specific effect on muscle tissue, since it reduces soleus atrophy induced by HU. The study of Ca(2+) activation properties of single skinned fibers revealed that clenbuterol partly prevented the decrease in maxim...
متن کاملGlucocorticoid-induced alterations in titin, nebulin, myosin heavy chain isoform content and viscoelastic properties of rat skeletal muscle
Viscoelastic properties of skeletal muscle are associated with a complex network of cytoskeletal proteins where titin and nebulin play a substantial role. The need for evaluation of muscle viscoelastic properties is widely accepted in clinical use to evaluate the effect of treatment or progression of muscle pathology (atrophy). We tested the hypothesis that the viscoelastic properties (elastici...
متن کاملEffects of unweighting and clenbuterol on myosin light and heavy chains in fast and slow muscles of rat.
To investigate the plasticity of slow and fast muscles undergoing slow-to-fast transition, rat soleus (SOL), gastrocnemius (GAS), and extensor digitorum longus (EDL) muscles were exposed for 14 days to 1) unweighting by hindlimb suspension (HU), or 2) treatment with the beta(2)-adrenergic agonist clenbuterol (CB), or 3) a combination of both (HU-CB). In general, HU elicited atrophy, CB induced ...
متن کاملChronic oral administration of beta-adrenoceptor agonist clenbuterol affects myosin heavy chain (MHC) expression in adult mouse heart.
The aim of this study was to analyze the effects of chronic administration of the beta-adrenoceptor agonist clenbuterol (2 mg/kg body weight/day for a period of 30 days) on the major contractile protein (myosin) in the left ventricular muscle of the adult mouse heart. Separation of myosin heavy chain (MHC) isoforms on 7.5 % glycerol SDS-PAGE and subsequent quantification of the gels by laser de...
متن کاملMyogenin, MyoD, and myosin expression after pharmacologically and surgically induced hypertrophy.
The relationship between myogenin or MyoD expression and hypertrophy of the rat soleus produced either by clenbuterol and 3,3', 5-triiodo-L-thyronine (CT) treatment or by surgical overload was examined. Mature female rats were subjected to surgical overload of the right soleus with the left soleus serving as a control. Another group received the same surgical treatment but were administered CT....
متن کامل